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Abstract— The purpose of the paper is to introduce a new
approach of planning called Assumption-Based Planning. This
approach is a very interesting way to devise a planner based
on a multi-agent system in which the production of a global
shared plan is obtained by conjecture/refutation cycles. Contrary
to classical approaches, our contribution relies on the agents
reasoning that leads to the production of a plan from planning
domains. To take into account complex environments and the
partial agents knowledge, we propose to consider the planning
problem as a defeasible reasoning where the agents exchange
proposals and counter-proposals and are able to reason about
uncertainty. The argumentation dialogue between agents must
not be viewed as a negotiation process but as an investigation
process in order to build a plan. In this paper, we focus on
the mechanisms that allow an agent to produce “reasonable”
proposals according to its knowledge.

I. I NTRODUCTION

This paper tackles the problem of devising an intelligent
agent able to elaborate plans under partial knowledge and/or
to produce plans that partially contradict its knowledge. In
other words, in order to reach a goal, such an agent is able to
provide a planwhich could be executed if certain conditions
were met. Unlike “classical” planners, the planning process
does not fail if some conditions are not asserted in the
knowledge base, but rather proposes an Assumption-Based
Plan or conjecture. Obviously, this conjecture must be
reasonable: the goal cannot be considered “achieved” and the
assumptions must be as few as possible because they become
new goals for the other agents. For instance, suppose that a
door is locked: if the agent seeks to get into the room behind
the door and the key is not in the lock, the planning procedure
fails even though the agent is able to fulfill 100% of its
objectives behind the door. Another possibility is to suppose
for the moment that the key is available and then plan to
open the door whereas finding the key might become a new
goal to be delegated. To that end, we designed a planner
that relaxes some restrictions regarding the applicability of
planning operators.

The Assumption-Based Planning process is based on
the concept of proof validity that can be considered as an
exchange of proposals and counter-proposals. According to
[1], a correct proof does not exist in the absolute. At any
time, an experimentation or a test can refute a proof. If one
single test leads to a refutation, the proof is reviewed and it
is considered as mere conjecture which must be repaired in

order to reject this refutation and consequently becomes less
questionable. The new proof can be subsequently tested and
refuted anew. Therefore, the proof elaboration is an iterative
non monotonous process of conjectures/refutations/repairs.

The same goes for our approach: each agent can refine,
refute or repair the current conjecture. If the reparation of a
previously refuted plan succeeds, it becomes more robust but
it can still be refuted later. If the reparation of the refuted
plan fails, agents leave this part of the reasoning and explore
another conjecture: “bad” conjectures are ruled out because
there is no agent able to push the process further. Finally, as in
an argumentation with opponents and proponents, the current
conjecture is considered as an acceptable solution when the
proposal/counter-proposal cycles end and all assumptions
have been removed.

The conjecture – refutation cycles can be illustrated by the
following informal dialog:

Ag1: “If I had fuel, I could load the passengerfred at down-
town, move the taxit from downtownto park and unload
it at park, but I have no fuel”: (1) initial refinement of
the goal: the lack of fuel does not lead to the planning
failure but becomes an assumption to be removed;

Ag2: “I can provide you fuel”: (2) refinement of the conjecture:
”has fuel” is no more an assumption.

Ag1: “Thank you!” (3)
Ag2: “But you need to pay the taxi to move the passengerfred

from downtownto park”: (4) refutation of the conjecture;
Ag2: “Therefore, you can load the passengerfred at

donwtown, pay the taxit and move it fromdowntownto
park”: (5) repairing of the conjecture by adding actions
to execute;

Ag1: “Yes, if I had money... But sorry, I cannot pay”: (6)
refutation of the conjecture;

Ag3: “OK, I’ll pay the taxi for you”: (7) refinement of the
conjecture, ”has money” is no more an assumption.

This informal example shows how agents iteratively refine
(1, 2, 7), refute (4, 6) or repair (5) the current conjecture in
order to produce an acceptable plan:Ag1 loads fred in t at
donwtown, Ag2 refuels t, Ag3 pays the taxi,Ag1 moves t
from downtownto park, and Ag1 unloadsfred at park. As
a matter of fact, Assumption-Based Planning raises many



challenging issues: how to plan with incomplete information?
Which reasonable assumptions can be put forward in order to
reach a given goal? How to define the conjecture/refutation
protocol so as to converge to an acceptable solution?

In this paper, we focus on the Assumption-Based Planning
algorithm, i.e. on how one agent elaborates a conjecture. In
section II, we briefly summarize the classical planning ap-
proach to introduce our Assumption-Based Planning model. In
sections III and IV, we describe our own planning algorithm.
Then, we discuss (section V) the properties of our approach.
The last section is dedicated to related works (section VI).

II. CLASSICAL PLANNING VERSUSASSUMPTION-BASED

PLANNING

A. Classical planning model overview

Classical planning can be defined by a tuple〈G, E ,A〉: G,
is a goal description (i.e., a set of world states),E is a partial
description of the world (i.e., the agent’s knowledge) andA
is a description of the actions that an agent can execute.E
andG are described in propositional logic. For instance, the
description of the world state can be written as follows:

{ at(cab38, downtown), at(fred, downtown),
hasfuel(cab38, 10) }

The goal of the agent is described by a set of knowledge
defining the world state to be reached after a plan execution.
In our example, the goal is reduced to a set containing only
one proposition:

{ at(fred, park) }

In general, an action is described by an operator defined by:

• a name, with parameters;
• a precondition list(i.e, the knowledge that must hold to

apply the action);
• a del list (i.e., the knowledge that does not hold after the

action execution);
• anadd list (i.e., the knowledge that holds after the action

execution).

For example, consider a taxicab38at downtownand a pas-
sengerfred at downtowntoo. The goal submitted to the team
is to movefred from his initial location topark. Considering
the following actions:

• load a passengerp in a taxi t at a specific locationx:
load(p, t, x);

• unload a passengerp from a taxi t at a specific location
x: unload(p, t, x);

• move a taxi t from a location x to an other y:
move(t, x, y).

The action,move(t, x, y), can be executed if and only if
there is a taxit at x and t has enough fuel:

move(t, x, y)
pre {at(t, x), hasfuel(t, q), (q ≥ 10)}
del {at(t, x), hasfuel(t, q)}
add {at(t, y), hasfuel(t, (q − 10))}

The action,load(p, t, x), can be executed if and only if there
is a taxi t and a passengerp located at the same placex:

load(p, t, x)
pre {at(p, x), at(t, x)}
del {at(p, x)}
add {in(p, t)}

The action,unload(p, t, x), can be executed if and only if
there is a taxit containing a passengerp at x:

unload(p, t, x)
pre {in(p, t), at(t, x)}
del {in(p, t)}
add {at(p, x)}

An actionα ∈ A is described by a transformation operator:

〈Preα, Delα, Addα〉

• Preα is the set of predicates that defines theprecondi-
tions of the actionα;

• Delα is the set of predicates that defines the knowledge
that becomes false after the execution ofα (del list);

• Addα is the set of predicates that defines the knowledge
that becomes true after the execution ofα (add list).

A planning problem is defined by a tuple:

〈E ,O,G〉

• E defines the knowledge of an agent;
• O = {〈Preα, Delα, Addα〉 | α ∈ A} defines the

description of the actions that an agent can execute (i.e.,
an operators set);

• G defines the goal of an agent, (i.e, a set of predicates).

A plan π is an ordered list of actions:

π = (α1, . . . , αn)

where each actionαi is an action inA.

Considering a planning problem〈E ,O,G〉, a plan π =
(α1, . . . , αn) defines a sequence ofn + 1 world states

π = E0, E1 . . . , En

with

• E0 = E and
• Ei = (Ei−1 −Delαi

) ∪Addαi
(1 ≤ i ≤ n).

A planπ = (α1, . . . , αn) is a solution of a planning problem
〈E ,O,G〉 if and only if:

1) the preconditions of all actions hold in the previous
world state,Ei−1 |= Preαi

for 1 ≤ i ≤ n;



2) the goal is reached in the final state generated by the
plan,En |= G.

In our example (paying the taxi is not considered here), a
solution planπ is

π = (load(fred, cab38, downtown),
move(cab38, downtown, park),
unload(fred, cab38, downtown))

B. Assumption-Based Planning model

The classical planning model presented in the previous
section cannot produce plans with assumptions or conjectures.
We define a conjecture as a plan that can be executed if
some assumptions hold. That leads us to explain the main
difference between classical planning and our approach. This
difference relies on the action semantics. Indeed, it is not
necessary that all preconditions hold in the current state to
execute an action. The preconditions that do not hold, build
a set of knowledge about the worldH calledassumptions.

A conjectureχ is defined as an ordered list of couples

χ = (〈Hα1 , α1〉, . . . , 〈Hαn , αn〉)

where

• Hαi
describes the assumptions that must hold before

executingαi. If Hαi is an empty set, no assumption is
needed to applyαi;

• αi is an action inA.

Considering a planning problem〈E ,O,G〉, a conjectureχ
is an ordered list ofn + 1 world states

χ = E0, E1, . . . , En

with

• E0 = E ∪ Hα1 and
• Ei = ({Ei−1 ∪Hαi−1} −Delαi

) ∪Addαi
(1 ≤ i ≤ n).

In our example, if the taxi has not fuel, a possible conjecture
is:

χ = (〈{}, load(fred, cab38, downdown)〉,
〈{hasfuel(cab38, 10)},

move(cab38, downtown, park)〉,
〈{}, unload(fred, cab38, park)〉)

To reach its goal, an agent must check all assumptions made
by the conjecture. It can count on its teammates competences
to make those assumptions become true. In other words,
assumptions made by one agent become additional goals to
be satisfied. The Assumption-Based Planning is justified by
this possible collaborative reasoning in a multi-agent context.

III. A SSUMPTIONS GENERATION

In classical planning model, operators are applicable if and
only if the preconditions of the operators are unifiable with
the agent’s knowledge base. In order to elaborate conjectures
(i.e, plans with assumptions), this constraint is relaxed. We
consider that an operator is always applicable even if all
preconditions do not hold. Therefore, the application of an
operator involves the computation of the lacking facts. This
computation is based on the unification algorithm. That is, at
least one substitution that makes the preconditions match with
some agent’s knowledge must be founded. A substitutionσ
is a finite set of the formσ = {x1 → t1, . . . , xn → tn}
where everyxi is a variable, everyti is a term not equal to
xi, andxi 6= xj for any i 6= j. Let σ be a substitution andp
be the preconditions of an operator. Thenpσ is an expression
obtained fromp by replacing simultaneously each occurrence
of the variablexi with the termti.

A. Substitutions computation

The computation of the set of possible assumptions is
described by the algorithm 1. LetPreα be the preconditions
of the action α, E be the agent’s knowledge andσ an
empty substitution at the first step of the algorithm.
The FindSubstitutions procedure computes all possible
substitutions fromE to executeα. If Preα is empty, thenα
can always be applied and the procedure returns an empty set
(line 2). Otherwise, the procedure tries to find recursively the
substitution in order to unifyPreα with E .

In this case, theFindSutitutionsprocedure unstacks the first
preconditionp contained inPreα (line 5) and tries to unify
p for each knowledge of the agent (line 7). If the unification
process succeeds, there is a substitutionσ that unifiesp with
a knowledge ofE . Therefore, the algorithm is recursively
launched onR, the remaining preconditions ofα (line 12).

For example, consider the move operator described as
follows:

move(t, x, y)
pre {at(t, x), hasfuel(t, q), (q ≥ 10)}
del {at(t, x), hasfuel(t, q)}
add {at(t, y), hasfuel(t, (q − 10))}

The knowledge of the agentE is:

{at(cab38, downtown), isloaded(cab38),
hasfuel(cab38, 10), at(cab74, downtown),
(not(isloaded(cab74))), hasfuel(cab74, 5),

at(cab73, downtown)}

In this case, there are three substitutions:

• σ1 = {t→ cab38, x→ downtown, q → 10}
• σ2 = {t→ cab74, x→ downtown, q → 5}
• σ3 = {t→ cab73, x→ downtown}



Algorithm 1 : FindSubstitutions(Preα, E , σ)

result ← an empty set of substitutions ;1

if Preα is emptythen2

return result ;3

end4

p← the first term ofPreα;5

R← the remaining terms inPreα;6

foreach term e ∈ E do7

θ ← Unify( p, e, σ) ;8

if θ == Failure then9

continue ;10

else11

foreach substitutionss in12

FindSubstitutions( R, E , σθ) do
add a substitutions in result ;13

end14

end15

end16

return result ;17

B. Assumptions generation

Each substitution defines a possible executable action in
which the parameters are instantiated by the value contained in
the substitution. TheGenerateAssumptionprocedure is given
by the algorithm 2. Letα be an action,σ a substitution andE a
set of knowledge. The algorithm applies for each precondition
p of α the substitutionσ and check ifpσ is contained in the
agent’s knowledge (line 3). Ifpσ is contained inE , pσ is
not an assumption (line 5). In this case, the algorithm has
the same behaviour as a classical planner. Otherwise,pσ is
an assumption needed to executeα (line 8). In the previous
example, the application of the three substitutionsσ1, σ2 and
σ3 on the preconditions of themoveoperator produces the
following assumptions sets (assumptions are labeled with a *):

A) { at(cab38, downtown), hasfuel(cab38, 10),
isloaded(cab38) }

B) { at(cab74, downtown), hasfuel(cab74, 5),
isloaded(cab74)∗, (q ≥ 10) }

C) { at(cab73, downtown), hasfuel(cab73, q)∗,
isloaded(cab73)∗, (q ≥ 10)∗ }

The result A of the substitutionσ1 application is a subset
of the agent’s knowledge. Therefore, no assumption is needed
to execute themove action. However, the results B and
C of the σ2 and σ3 applications contain assumptions. The
GenerateAssumptionsprocedure distinguishes three kinds of
assumptions:

1) Hypothesis generation: the substitution can generate
literals that do not belong to the current state, e.g.
in C) isloaded(cab73). Then, those literals are added
to the current state ashypothesis. This means that
expressions missing from the current state are not

considered as false but rather as unknown. Hypothesis
can also contain variable symbols not instantiated if no
instance can be found by the substitution function (e.g.,
?q in C) hasfuel(cab73, ?q)). This means thatcab73
has an unknown quantity of fuel, but this unknown
does not prevent the planning process to proceed (e.g.
assessment of?q remains an open issue to be fixed by
another agent);

2) Fact negation: if an atom in the substitution is the
negation of a fact in the current state, then this fact
is withdrawn and replaced by its negation (e.g., the
ground atom in B)isloaded(cab74)). In that case, the
agent knows that it is reasoning by contradiction and
that it bets on its teammates ability to change the world
consistently (in that example, by loadingcab74);

3) Constraint violation: as in fact negation, constraints
can be violated e.g. in B)(?q >= 10.00).

Algorithm 2 : GenerateAssumptions(α, σ, E)

result ← an empty set of assumptions ;1

Preα ← the preconditions ofα ;2

foreach preconditionp ∈ Preα do3

// pσ is an agent’s knowledge4

if pσ ∈ E then continue ;5

// pσ is an assumption6

else7

addpσ in result ;8

end9

end10

return result ;11

IV. PLANNING ALGORITHM

The Assumption-Based Planning algorithm principle relies
on a domain independent planning mechanism, HTN (Hierar-
chical Transition Network). In HTN planner [2], the objective
is not to achieve a set of goals but to perform some sets of
tasks. The agent’s input includes a set of operators similar
to those used in classical planning [3] and also a set of
methods, each of which is a prescription on how to decompose
some tasks into some sets of subtasks. The agent proceeds by
decomposingnon-primitive tasksrecursively into smaller and
smaller subtasks, untilprimitive tasks, that can be performed
directly by planning operators, are reached.

A. Primary notions

A primitive action α is described by an operator
〈nameα, P reα, Delα, Addα〉 where nameα is the name of
the primitive action,Preα is the preconditions set needed
to executeα, Delα and Addα define respectively the set
of effects to delete and to add to the agent’s knowledge.
An operator is executed when all preconditionsPreα are



satisfied in the current knowledge state of the agent. The
operator execution involves the modification of the current
state according to the effects contained inDelα et Addα. An
operator can be applied if there is a substitutionσ for Preα

such asPreασ is instantiated.nασ defines the action that can
be executed for each variable replaced by a value contained
in σ. For example, the operatorload(p, t, x):

load(p, t, x)
pre {at(p, x), at(t, x)}
del {at(p, x)}
add {in(p, t)}

and the agent’s knowledge:

{ at(cab38, downtown), at(fred, donwtown) }

There is a substitutionσ that binds the variablesp, t et x to
the constant valuesfred, cab38 and downtown. Therefore,
the actionload(fred, cab38, downtown) can be executed.

A compound action α is described by a method
〈nα, P reα, Actα〉 where nα is the name ofα, Preα is the
preconditions set needed to applyα, Actα defines a list of
actions to execute (i.e., the method body). A method can
be executed when all preconditionsPreα are satisfied in the
current state. A method execution involves the execution of all
actions contained in the ordered actions listActα. A method
can be applied if there is a substitutionσ for Preα with Preασ
instantiated.Actασ defines the list of actions to execute the
method. For example, let a methodmove-passenger(p, x, y)
that move a passengerp from a locationx to y:

move-passenger(p, x, y)
pre {at(p, x), at(t, x)}
act {load(p, t, x),move(t, x, y), unload(p, t, y)}

and the agent’s knowledge:

{ at(cab38, downtown), at(fred, downtown) }

There is a substitutionσ that binds each variables
p, x, y and t with the constant values fred,
downtown, park and cab38. Therefore, the actionmove-
passenger(fred, downtown, park) can be executed. This
execution involves the execution of three actions contained in
the body of the operator:

1) load(fred, cab38, downtown);
2) move(cab38, downtown, park);
3) unload(fred, cab38, park).

A conjecture is an ordered list of primitive actions. Ifχ
is a conjecture andE a knowledge state,χ(E) is the state
reached after the execution ofχ from E .

A planning problem is defined by〈E ,O,G〉:
• E defines the agent’s knowledge. This knowledge is

described by a set of propositions;
• O defines the set of operators or methods;

• G defines the ordered list of goals that must be reached
by the agent.

The set of solution conjecturesC(E ,O,G) of a planning
problem can be recursively defined:

• If G is an empty set, the empty conjecture is returned.
• Otherwise, letα be the first task or goal ofG, andR be

the remaining goals:

1) If α is a primitive action and there is a conjecture
χ1 to reachα then,

C(E ,O,G) = {append(χ1, χ2) | χ2 ∈ C(E ,O,R)}

2) If α is a primitive action and there is not a conjec-
ture χ to reachα then,

C(E ,O,G) = ∅

3) If α is a composed action then,

C(E ,O,G) = C(E ,O, append(Actα,R)

whereActα defines the actions list to be executed
in order to realiseα.

B. Principle

Until now, we have considered that a method or an operator
was always executable, even if all their preconditions were
not completely held and we have presented the algorithm to
compute assumptions. The number of possible assumptions is
potentially unlimited. Therefore, it is not possible to compute
all possible conjectures. The purpose of the Assumption-
Based Planning algorithm is to find conjectures that make
the fewest assumptions. To that end, the Assumption-Based
Planning algorithm is based on a reachable states search
space. This states space is stored in a tree called theconjecture
tree.

This tree contains the different steps of the agent’s reason-
ing. Each node stands for a state that can be reached after the
execution of an actionαi in a conjectureχ = (α1, . . . , αn) A
nodeni is defined by〈Ei,Ai, wi〉:
• Ei is a world state (i.e., a set of propositions fully or

partially instantiated);
• Ai is a list of remaining actions to execute at this step

of the reasoning;
• wi is the valuation of the node (i.e., the number of

assumptions given from the root node of the conjecture
tree to this node).

The edges define the possible transitions between the
different world states. A transition is labeled by a method or
operator name and the possible assumptions needed to reach it.

The general procedure to produce a conjecture is given
by the algorithm 3. TheFindConjectureprocedure takes as
parameters a planning problem:E the initial state (i.e., the
agent’s knowledge),O a list of operators andG the ordered



list of goals. The root node of the conjecture tree is defined
by the node〈E ,G, 0〉, E is the initial set of the agent’s
knowledge,G the list of goals and null valuation.

The algorithm can be split in two different steps: the con-
jecture tree expansion (line 3) which represents the reachable
states space and the conjecture extraction (line 4).

Algorithm 3 : FindConjecture(E , O, G)

root ← 〈E ,G, 0〉 ;1

CTree ← create a conjecture tree with root noderoot ;2

ExpandConjectureTree( CTree, root) ;3

return ExtractConjecture( CTree) ;4

C. Conjecture tree expansion

Unlike HTN recursive algorithm, the conjecture tree
expansion is not a simple depth first exploration: the
computation of the conjecture with the fewest assumptions is
equivalent to a minimization problem. In order to solve this
problem, the expansion algorithm is based on the “branch and
bound” algorithm. The nodes stored in the conjecture tree are
valuated by the number of assumptions made (see algorithm
4) to reach it and the node with the weakest valuation
is recursively chosen at the expansion step to expand the
conjecture tree until a leaf is found.

The expansion procedure is described by the algorithm 4.
From the current exploration nodeni = 〈Ei,Ai, wi〉, the
ExpandConjectureprocedure tries to apply the first action
α contained inAi (line 1). Then it computes the possible
substitutionsΣ for the preconditions ofα according to the
knowledgeEi (line 6). For each substitution, the procedure
generates the assumptionsHα needed to applyα (line 10).
If α is a primitive action (line 14), then it adds a child node
ni+1 to the current node such as:

ni+1 = 〈 ({Ei ∪Hα} −Delα) ∪Addα,R, wi + |Hα| 〉

where |Hα| defines the number of assumptions needed to
apply α. Otherwise (line 20),α is a composed action and
the procedure adds a child node to the current node such as:

ni+1 = 〈 {E ∪ Hα}, append(Actα,R), wi + |Hα| 〉

Finally, the procedure evaluates the new current node
by computing the node with the lowest valuation in the
conjecture tree (line 30) and runs recursively the expansion
procedure with the new node (line 31).

When assumptions are generated by the algorithm, the
expansion procedure checks if the assumptions are legal (line
11). An assumption is legal if its assumption predicates was
described in the planning domain as hypothetical. The legality
notion was added to our algorithm to specify states of the
world that can be hypothetical. This mechanism allows to

Algorithm 4 : ExpandConjectureTree(CTree, ni)

// Extract the first action α contained in1

// the current node ni

α← the first action contained inni ;2

R ← the remaining actions contained inni ;3

// Compute the possible substitutions from4

// Preα, α preconditions, and Ei, the world5

// of the current node ni and σ an empty6

// substitution7

Σ← FindSubstitutions( Preα, Ei, σ) ;8

// Create a new node ni+1 for each9

// each applicable action10

foreach substitutionσ ∈ Σ do11

// Compute the assumptions needed to12

// apply α13

Hα ← GenerateAssumptions( α, σ, Ei) ;14

// Check if the assumption generated15

// are legal16

if ∃ h ∈ Hα with h a legal assumptionthen17

continue ;

// α is a primitive action18

if α is primitive then19

Ei+1 ← ({Ei ∪Hα} −Delα) ∪Addα ;20

Ai+1 ← R ;21

wi+1 ← wi + |Hα| avec|Hα| the number of22

elements inHα ;
end23

// α is a composed action24

else25

Ei+1 ← Ei ∪Hα ;26

Ai+1 ← Append( Actα, R) ;27

wi+1 ← wi + |Hα| with |Hα| the number of28

elements inHα ;
end29

// Add a new node ni+1 to the30

// conjecture tree31

add a new nodeni+1 = 〈Ei+1,Ai+1, wi+1〉 ;32

end33

// Compute the node with few assumptions34

// and run recursively the procedure35

// ExpandConjectureTree36

bestNode ← the node with few assumptions inCTree ;37

ExpandConjectureTree( bestNode) ;38

reduce the states space to explore, limiting the size of the
conjecture tree.

D. Conjecture Extraction

The second step is the conjecture extraction from the
conjecture tree (see Algo. 5). A conjecture is represented by
a branch (i.e. a path from the root node to a leaf). First,



the ExtractConjectureprocedure computes among the set of
solution nodes (i.e., the leaf of the conjecture tree) the node
that makes the fewest assumptions (line 2). For each edge of
the branch from the chosen solution node to the root node (line
3), the procedure checks the type of transition (i.e., primitive
or composed action). If the edge is labeled with a primitive
one, then the action and their assumptions are added to the
conjecture (line 5). Otherwise, only the assumptions are added
to the conjecture (line 7).

Algorithm 5 : ExtractConjecture(CTree)

χ← an empty conjecture ;1

n← the leaf solution node with the fewest assumptions ;2

while n is not the root node ofCTree do3

if n was built with a primitive actionαi then4

add action〈Hαi , αi〉 to χ;5

else6

add the assumptionsHαi
to the actionαi−17

contains inχ ;
end8

n← the father node ofn ;9

end10

return χ ;11

V. D ISCUSSION

Soundness and completeness:The algorithm tries to
decompose the initial goal in an ordered list of primitive
tasks. As in SHOP, for a finite search space, the construction of
the conjecture tree is sound and complete. For infinite search
spaces, it is also complete due to the iterative-deepening
conjecture tree construction. However, our algorithm is more
greedy because, when assumptions must be done, more nodes
are created. The primary tests on our JAVA implementation
highlight results in the same order of magnitude than
the JSHOP algorithm (the JAVA implementation of SHOP

algorithm).

Search limitation: The number of allowed assumptions
can be bounded in order to end the search process at an
arbitrary limit. When the limit is set to 0, the algorithm is
equivalent to SHOP. This can be used to adapt our algorithm
to the system capabilities and find conjecture with more and
more assumptions.

Choice of a planning system:There are many different
planning systems (e.g., planning based on Binary Decision
Diagrams [4], Mutex [5], heuristic search [6], constraints
satisfaction [7] and so forth). However, SHOP is well-
suited for assumptions generation thank to the substitution
procedure that allows to compare the agent’s knowledge
with the preconditions necessary to trigger an operator or a
method. We found out that assumptions generation turned out
to be much more difficult in planners like GRAPHPLAN [5].

Adequacy with interactions: In teamwork context, a con-
jecture can be refuted by another agent; if no repair is found,
the conjecture must be abandoned. In this case, the cost of
providing another conjecture is low because agents can rely
on the conjecture tree already computed and resume their
exploration.

VI. RELATED WORK

The problem of constructing plans in a distributed
environment has been approached from two different
directions. One approach makes an emphasis on the problem
of controlling and coordinating the actions of multiple
agents in a shared environment. The others approaches focus
on planning and how it can be extended into distributed
environment, where the process of formulating a plan could
involve actions and interactions of many participants. The
planning approach is the nearest to Assumption-Based
Planning.

The first approach objective is not to form a good collective
plan, but rather to ensure that the agent’s local objective
will be met by this plans. This approach based on BDI

models formalizes the distributed planning process using the
mental states of the agents [8], [9], [10]. These approaches
emphasize the necessity for a group of agents to share ajoint
intention in order to reach a goal [11], [12]. They have been
validated in projects such as STEAM [13]. Another cognitive
approach [14] formalizes the coordination process by two
kinds of intentions: the agent’sintention todo an action or a
plan and the agent’sintention thatsome propositions hold.
Then, shared plans are generated by combining predefined
plans or “recipes”.

The second approach [15], [16] places the problem of
forming a plan as the ultimate objective and is typically
carried out by agents that have been endowed with shared
goals and representation. This approach can be divided
in three distinct steps: the decomposition step of tasks
into subtasks [17], [18], the allocation step [19] and the
execution and conflict resolution step. This formal division
is sometimes difficult to implement because the three steps
are not independent in many cases: conflict resolution can
imply to re-allocate several subtasks or to seek another
decomposition and, therefore, deadlocks must be carefully
dispelled. Several frameworks focus on the detection of
relations between plans [20]. Two kinds of relations are
identified: positive relations (e.g., redundant tasks) or negative
relations (e.g., resources conflicts). Conflicts are solved in
many ways: by negotiation [21], by argumentation [22],
[23], by synchronization [24], [25] etc. More recently, the
systems DSIPE [26] that is a distributed version of SIPE-2
or the dMARS project [27] based on a PRS architecture,
are interested in solving real-world planning problems and,
to that end, argue for the use of domain knowledge in planning.



Although these coordination mechanisms bring us a number
of answers to make a group of agents work together as a team,
they show limitations to solve cooperative task when the goals
of the agents are not well proportioned. These limitations can
be explained by the fact that coordination mechanisms are not
interleaved in the planning process and often use predating
plans or recipes libraries. Another limitation is due to the
difficulty to take into account the necessary uncertainty in real-
world because of the increasing planning complexity coming
from incomplete information.

VII. C ONCLUSION

The Assumption-Based Planning model outlined in
this paper relies on plan production and revision by
conjecture/refutation cycles. We presented one of the most
important elements of this project: the Assumption-Based
Planner. This process is based on a HTN planner, SHOP. For
a given initial task, the algorithm seeks the less hypothetical
plan (i.e, conjecture). It breaks down the initial task recursively
into simple operators. At each step, if no complete substitution
is found, the operators or methods constraints are relaxed in
order to compute the assumptions necessary to push the plan
elaboration further. The construction of the conjecture tree is
guided by the valuation of each node in terms of assumptions
guaranteeing to find the most reasonable conjecture. As far as
teamwork is concerned, each time a conjecture is definitively
abandoned, a new one can be proposed from the ongoing
conjecture tree.

Thus, Assumption-Based Planning model merges in
the collaborative plan generation, the decomposition and
the coordination steps. Moreover, the Assumption-Based
Planning includes in the agents’ reasoning the notion of
uncertainty and allows to compose the agents competences.
The argumentation is used to structure the multi-agent
reasoning as a collaborative investigation process and not as
a negotiation one. From our point of view, this approach is
suitable for applications in which agents share a common
goal and in which the splitting of the planning and the
coordination steps (when agents have independent goals,
they locally generate plans and then solve their conflicts)
becomes difficult due to the agents strong interdependence.
Our target applications are the composition of web services,
the cooperation of video games characters and the dynamic
reconfiguration of GUI components.

Our future research direction will be the formalization of the
conjecture/refutation protocol: the corresponding dialog games
have to define interaction rules ensuring the convergence of
the multi-agent planning process towards a mutually accepted
conjecture; and the identification of different kinds of domain-
independent plan refutation to build robust plans.
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