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Abstract—The purpose of the paper is to introduce a new order to reject this refutation and consequently becomes less
approach of planning called Assumption-Based Planning. This questionable. The new proof can be subsequently tested and
approach is a very interesting way to devise a planner based ref,ted anew. Therefore, the proof elaboration is an iterative

on a multi-agent system in which the production of a global t f iect Irefutations/ .
shared plan is obtained by conjecture/refutation cycles. Contrary 10N MONGLONOUS Process or conjecturesirefutationsirepairs.

to classical approaches, our contribution relies on the agents
reasoning that leads to the production of a plan from planning ~ The same goes for our approach: each agent can refine,
domains. To take into account complex environments and the refyte or repair the current conjecture. If the reparation of a

partial agents knowledge, we propose to consider the planning . .
problem as a defeasible reasoning where the agents eXChangéarewously refuted plan succeeds, it becomes more robust but

proposals and counter-proposals and are able to reason about It can still be refuted later. If the reparation of the refuted
uncertainty. The argumentation dialogue between agents must plan fails, agents leave this part of the reasoning and explore
not be viewed as a negotiation process but as an investigationanother conjecture: “bad” conjectures are ruled out because
{’hrgcasescr'lgn‘i’srgg :ﬁatbl;.l:g a ;r']agéé’;tt?c')s szggsge"“{?e;zgﬁ b(l)g” there is no agent able to push the process further. Finally, as in
proposals according to its knowledge. an grgumeptatlon Wlth opponents and proponent;, the current
conjecture is considered as an acceptable solution when the
I. INTRODUCTION proposal/counter-proposal cycles end and all assumptions
have been removed.
This paper tackles the problem of devising an intelligent
agent able to elaborate plans under partial knowledge and/ofrhe conjecture — refutation cycles can be illustrated by the
to produce plans that partially contradict its knowledge. Ipyjiowing informal dialog:
other words, in order to reach a goal, such an agent is able to
provide a planwhich could be executed if certain conditiorf&d1:
were met Unlike “classical” planners, the planning process
does not fail if some conditions are not asserted in the
knowledge base, but rather proposes an Assumption-Based
Plan or conjecture Obviously, this conjecture must be
reasonablethe goal cannot be considered “achieved” and g
assumptions must be as few as possible because they become
new goals for the other agents. For instance, suppose t 1?%1
door is locked: if the agent seeks to get into the room behitfs:
the door and the key is not in the lock, the planning procedure
fails even though the agent is able to fulfill 100% of it&o2:
objectives behind the door. Another possibility is to suppose
for the moment that the key is available and then plan to
open the door whereas finding the key might become a new
goal to be delegated. To that end, we designed a planArﬂér
that relaxes some restrictions regarding the applicability
planning operators.

“If I had fuel, | could load the passengéed at down-
town move the taxt from downtownto park and unload

it at park, but | have no fuel”: (1) initial refinement of
the goal: the lack of fuel does not lead to the planning
failure but becomes an assumption to be removed,;

“I can provide you fuel”: (2) refinement of the conjecture:
"has fuel” is no more an assumption.

“Thank you!” (3)

“But you need to pay the taxi to move the passengei!
from downtownto park’: (4) refutation of the conjecture;
“Therefore, you can load the passengéed at
donwtown, pay the taxit and move it fromdowntownto
park’: (5) repairing of the conjecture by adding actions
to execute;

“Yes, if | had money... But sorry, | cannot pay”: (6)
of refutation of the conjecture;

Ags: “OK, I'll pay the taxi for you™ (7) refinement of the
conjecture, "has money” is no more an assumption.

The Assumption-Based Planning process is based on
the concept of proof validity that can be considered as anThis informal example shows how agents iteratively refine
exchange of proposals and counter-proposals. According(io 2, 7), refute (4, 6) or repair (5) the current conjecture in
[1], a correct proof does not exist in the absolute. At angrder to produce an acceptable platy; loadsfred in ¢ at
time, an experimentation or a test can refute a proof. If om®nwtown Ag, refuelst, Ags pays the taxi,Ag; movest
single test leads to a refutation, the proof is reviewed andfibm downtownto park, and Ag; unloadsfred at park As
is considered as mere conjecture which must be repairedairmatter of fact, Assumption-Based Planning raises many



challenging issues: how to plan with incomplete information? move(t, X, y)

Which reasonable assumptions can be put forward in order to pre  {at(t,x), hasfuel(t,q), (¢ = 10)}
reach a given goal? How to define the conjecture/refutation del  {at(t,x), hasfuel(t, q)}
protocol so as to converge to an acceptable solution? add {at(t,y), has fuel(t, (¢ — 10))}

The actionjoad(p, t, x), can be executed if and only if there
In this paper, we focus on the Assumption-Based Planniiiga taxit and a passengerlocated at the same plaae
algorithm, i.e. on how one agent elaborates a conjecture. In

) . . . ) load(p, t, x)
section 1l, we briefly summarize the classical planning ap- re  {at(p ), at(t,z)}
proach to introduce our Assumption-Based Planning model. In gel {Zt(? i)’}a » &

sections Il and IV, we describe our own planning algorithm. dd  fi :
Then, we discuss (section V) the properties of our approach. a {in(p, 1)}
The last section is dedicated to related works (section VI). The action,unload(p,t,x), can be executed if and only if
there is a taxi containing a passengerat x:
[I. CLASSICAL PLANNING VERSUSASSUMPTION-BASED

unload(p, t, X
PLANNING (P )

pre {in(p,t),at(t,x)}
A. Classical planning model overview del  {in(p,1)}

add t(p,x
Classical planning can be defined by a tuple £, A): G, ) ) {? P, x)} )
is a goal description (i.e., a set of world state)s a partial An actiona € A is described by a transformation operator:
Qescrlptloq o'f the world (|.§., the agent's knowledge) a#d (Preg, Dely, Add,)
is a description of the actions that an agent can execute.
and G are described in propositional logic. For instance, the s Pre, is the set of predicates that defines tirecondi-

description of the world state can be written as follows: tions of the actionq;
e Del, is the set of predicates that defines the knowledge
{ at(cab38, downtown), at(fred, downtown), that becomes false after the executiomofdel list);
hasfuel(cab38,10) } « Add, is the set of predicates that defines the knowledge

that becomes true after the executionoofadd list).
The goal of the agent is described by a set of knowledge

defining the world state to be reached after a plan execu“%planning problem is defined by a tuple:
In our example, the goal is reduced to a set containing only '
one proposition: (€,0,6)

{ at(fred,park) }

In general, an action is described by an operator defined by:

« aname with parameters;

« a precondition list(i.e, the knowledge that must hold to
apply the action);

« adel list(i.e., the knowledge that does not hold after the . . .
action execution); A plan 7 is an ordered list of actions:

« anadd list(i.e., the knowledge that holds after the action
execution).

« & defines the knowledge of an agent;

e O = {(Pres,Dely,Add,) | o« € A} defines the
description of the actions that an agent can execute (i.e.,
an operators set);

« G defines the goal of an agent, (i.e, a set of predicates).

= (a1,...,0n)

where each action; is an action inA.

For example, consider a tagab38at downtownand a pas-

sengerfred at downtowntoo. The goal submitted to the team COnsidering a planning problent, 0,¢), a planm =

is to movefred from his initial location topark. Considering (@1:---: @) defines a sequence of+ 1 world states
the following actions: 7=E&0,E...,En
« load a passengegr in a taxit at a specific locatiorx: ,
load(p, t,x); with
. unload a passengerfrom a taxit at a specific location ¢ & =& and
X: unload(p, t, x); o & = (-1 — Del,,)U Add,, (1 <i<n).
« move a taxit from a location x to an othery:
move(t, x,y). Aplanm = (a1, ..., a,) is a solution of a planning problem

(€,0,6) if and only if:
The action,move(t, z,y), can be executed if and only if 1) the preconditions of all actions hold in the previous
there is a taxi at x andt has enough fuel: world state,£;_1 = Pre,, for 1 <i <mn;



2) the goal is reached in the final state generated by the I1l. A SSUMPTIONS GENERATION

I ] n . . . . .
plan, &, |= ¢ In classical planning model, operators are applicable if and

) o ) only if the preconditions of the operators are unifiable with
In our example (paying the taxi is not considered here),ge agent’s knowledge base. In order to elaborate conjectures
solution planz is (i.e, plans with assumptions), this constraint is relaxed. We
consider that an operator is always applicable even if all

m = (load(fred, cab38, downtown), preconditions do not hold. Therefore, the application of an
move(cab38, downtown, park), operator involves the computation of the lacking facts. This
unload( fred, cab38, downtown)) computation is based on the unification algorithm. That is, at

least one substitution that makes the preconditions match with
B. Assumption-Based Planning model some agent’s knowledge must be founded. A substitution

The classical planning model presented in the previob%E
section cannot produce plans with assumptions or conjectur\é{

We define a conjecture as a plan that can be executed’i " . !
the preconditions of an operator. Thenis an expression

some assumptions hold. That leads us to explain the main " qf b laci imul | h
difference between classical planning and our approach. Tﬂgtame romp by replacing simultaneously each occurrence

difference relies on the action semantics. Indeed, it is ngft the variablez; with the term;.
necessary that all preconditions hold in the current state to o .
execute an action. The preconditions that do not hold, buffti Substitutions computation

a finite set of the formv = {z; — t1,...,2, — t,}
ere everyr; is a variable, every; is a term not equal to

f andz; # x; for any¢ # j. Let o be a substitution ang

a set of knowledge about the workld called assumptions The computation of the set of possible assumptions is
described by the algorithm 1. Létre, be the preconditions
A conjecturey is defined as an ordered list of couples of the action«, £ be the agent's knowledge and an
empty substitution at the first step of the algorithm.
X = ((Hays 1), ..., (Ha,, o)) The FindSubstitutions procedure computes all possible

substitutions from€ to executex. If Pre, is empty, thenx
can always be applied and the procedure returns an empty set
o H,, describes the assumptions that must hold befofne 2). Otherwise, the procedure tries to find recursively the
executinge;. If H,, is an empty set, no assumption issubstitution in order to unifyPre,, with &.
needed to applyv;;
 «; is an action inA. In this case, th&indSutitutionsprocedure unstacks the first
preconditionp contained inPre,, (line 5) and tries to unify
Considering a planning probled€, O, G), a conjecturey P for each knowledge of the agent (line 7). If the unification

where

is an ordered list of. + 1 world states process succeeds, there is a substitutidihat unifiesp with
a knowledge of€. Therefore, the algorithm is recursively
x=&,&1,..-,En launched onR, the remaining preconditions ef (line 12).
with For example, consider the move operator described as
e« & =E8UH,, and follows:
. 52 = ({51;1 @] Hai_l} - Delai) @] Addai (1 < ) S TL) move(t, X, y)
pre  {at(t,z), hasfuel(t,q), (¢ > 10)}
In our example, if the taxi has not fuel, a possible conjecture del  {at(t,x), hasfuel(t,q)}
is: add {at(t,y), hasfuel(t, (¢ — 10))}
Y = ({3} load(fred, cab3s, downdown)), The knowledge of the age#t is:
({hasfuel(cab38,10)}, {at(cab38, downtown), isloaded(cab38),
move(cab38, downtown, park)), has fuel(cab38,10), at(cabT4, downtown),
{{}, unload(fred, cab38, park))) (not(isloaded(cab74))), has fuel(cab74,5),

To reach its goal, an agent must check all assumptions made at(cabT3, downtown)}

by the conjecture. It can count on its teammates competenggshis case, there are three substitutions:
to make those assumptions become true. In other words,
assumptions made by one agent become additional goals t& 7! ~ {t — cab38, 2 — downtown, ¢ — 10}
be satisfied. The Assumption-Based Planning is justified by® 72 ~ {t — cabT4,z — downtown, ¢ — 5}
this possible collaborative reasoning in a multi-agent context.® 03 = {t — cabT3,z — downtown}



Algorithm 1: FindSubstitutionsPre,, &, o) considered as false but rather as unknown. Hypothesis

1 result — an empty set of substitutions : can also contain variable symbols not instantiated if no

2 if Pre, is emptythen instance can be found by the substitution function (e.g.,

3 return result : ?q in C) hasfuel(cab73, ?¢) This means thatab73

4+ end has an unknown quantity of fuel, but this unknown

5 p < the first term ofPre.,; does not prevent the _planning process to proc_eed (e.0.

6 R — the remaining terms itPre,: assessment dfq remains an open issue to be fixed by

7 foreachterme € £ do another agent);

: ﬁ;:linll%lufg fﬁgr:’ 2) Fact negation: if an atom in the substitution is the

10 continue : _negqtion of a fact in the curreqt state, f[hen this fact

u else is withdrawn _and .replaced by its negation (e.g., the

b foreach substitutionss in ground atom in B)!slpaded(cap74) In that case, the
FindSubstitutions( R, £, 0f) do ageqt knows t'hat it is reasoning by contradiction and

s add a substitutions in réSl.;lt . that |_t bets on its teammates ability to_change the world

' consistently (in that example, by loadingb74;
14 end
15 end 3) Constraint violation: as in fact negation, constraints

16 end can be violated e.g. in B)?q >= 10.00)
17 return result ;

Algorithm 2: GenerateAssumptions( o, &)

1 result — an empty set of assumptions ;

T ] . . 2 Prey < the preconditions ot ;
Each substitution defines a possible executable action Jrforeach preconditionp € Pre, do

which the parameters are instantiated by the value contained,in ;5 is an agent's knowledge
the substitution. Th&enerateAssumptioprocedure is given ¢ if ;; ¢ £ then continue;

by the algorithm 2. Letv be an actiong a substitution and a i _

set of knowledge. The algorithm applies for each preconditidn  // Po is an assumption

p of o the substitutions and check ifpo is contained in the 7 ©IS€ _

agent's knowledge (line 3). Ifo is contained in&, po is 8 addpo in result ;

not an assumption (line 5). In this case, the algorithm hds end

the same behaviour as a classical planner. Otherwisds 10 end

an assumption needed to executdline 8). In the previous 11 return result ;

example, the application of the three substitutienso, and

o3 on the preconditions of thenove operator produces the

following assumptions sets (assumptions are labeled with a *): IV. PLANNING ALGORITHM

B. Assumptions generation

The Assumption-Based Planning algorithm principle relies
on a domain independent planning mechanismy HHierar-
chical Transition Network). In HTN planner [2], the objective
is not to achieve a set of goals but to perform some sets of
tasks The agent’s input includes a set of operators similar
to those used in classical planning [3] and also a set of
methodseach of which is a prescription on how to decompose
some tasks into some sets of subtasks. The agent proceeds by

The result A of the substitutionl application is a subset decomposingqion-primitive tasksecursively into smaller and
of the agent’s knowledge. Therefore, no assumption is needgflaller subtasks, untrimitive tasks that can be performed
to execute themove action. However, the results B anddirectly by planning operators, are reached.

C of the o2 and o3 applications contain assumptions. The
GenerateAssumptionsrocedure distinguishes three kinds ofA. Primary notions

assumptions: A primitive action o is described by an operator
1) Hypothesis generation:the substitution can generate{name,,, Pre,, Del,, Add,) where name,, is the name of
literals that do not belong to the current state, e.the primitive action,Pre, is the preconditions set needed
in C) isloaded(cab73) Then, those literals are addedo executea, Del, and Add, define respectively the set
to the current state abypothesis This means that of effects to delete and to add to the agent’s knowledge.
expressions missing from the current state are ndh operator is executed when all preconditioRse, are

A) { at(cab38, downtown), hasfuel(cab38, 10),
isloaded(cab38) }

B) { at(cab74,downtown), hasfuel(cab74,5),
isloaded(cab74)*, (¢ > 10) }

C) { at(cab73, downtown), hasfuel(cab73, q)*,
isloaded(cab73)*, (¢ > 10)* }



satisfied in the current knowledge state of the agent. T

operator execution involves the modification of the current

state according to the effects containedial,, et Add,. An
operator can be applied if there is a substitutiofor Pre,,
such asPre,o is instantiatedn, o defines the action that can

hes G defines the ordered list of goals that must be reached
by the agent.

The set of solution conjectures(€, O, G) of a planning
problem can be recursively defined:

be executed for each variable replaced by a value contained G is an empty set, the empty conjecture is returned.

in o. For example, the operatdsad(p, t, z):

load(p, t, X)
pre {at(p,x),at(t,z)}
del {at(p,z)}

add {in(p,t)}
and the agent’s knowledge:

{ at(cab38, downtown), at( fred, donwtown) }

There is a substitution that binds the variableg, ¢ et 2 to
the constant valuegred, cab38 and downtown. Therefore,
the actionload(fred, cab38, downtown) can be executed.

A compound action« is described by a method
(ng, Prey, Act,) wheren,, is the name ofw, Pre, is the
preconditions set needed to apply Act, defines a list of

« Otherwise, letn be the first task or goal af, andR be
the remaining goals:

1) If o is a primitive action and there is a conjecture
x1 to reacha then,

C(&,0,G) = {append(x1,x2) | x2 €C(E,O0,R)}

2) If « is a primitive action and there is not a conjec-
ture x to reacha then,

C(£,0,G) =10
3) If a is a composed action then,
C(E,0,G)=C(&,0, append(Acty, R)

where Act,, defines the actions list to be executed
in order to realisex.

actions to execute (i.e., the method body). A method cg principle

be executed when all preconditios-¢, are satisfied in the

current state. A method execution involves the execution of all

actions contained in the ordered actions listt,,. A method
can be applied if there is a substitutierfor Pre,, with Pre,o
instantiated.Act,o defines the list of actions to execute th
method. For example, let a methadove-passengérs, , y)
that move a passenggrfrom a locationz to y:

move-passenger(p, X, Y)
pre {at(p,x),at(t,z)}
act {load(p,t,x), move(t,x,y),unload(p,t,y)}

and the agent’s knowledge:
{ at(cab38, downtown), at( fred, downtown) }

There is a substitutionoc that binds each variables
p, x, y and t with the constant values fred,
downtown, park and cab38. Therefore, the actiormove-
passengdifred, downtown, park) can be executed. This
execution involves the execution of three actions contained
the body of the operator:

1) load(fred, cab38, downtown);

2) move(cab38, downtown, park);
3) unload(fred, cab38, park).

A conjecture is an ordered list of primitive actions. yf
is a conjecture and a knowledge statey(€) is the state
reached after the execution gffrom £.

A planning problem is defined b{¢, O, G):

o & defines the agent's knowledge. This knowledge
described by a set of propositions;
« O defines the set of operators or methods;

e

Until now, we have considered that a method or an operator
Was always executable, even if all their preconditions were
not completely held and we have presented the algorithm to
compute assumptions. The number of possible assumptions is
potentially unlimited. Therefore, it is not possible to compute
all possible conjectures. The purpose of the Assumption-
Based Planning algorithm is to find conjectures that make
the fewest assumptions. To that end, the Assumption-Based
Planning algorithm is based on a reachable states search
space. This states space is stored in a tree callecbihjecture

tree

This tree contains the different steps of the agent’s reason-
ing. Each node stands for a state that can be reached after the
execution of an action; in a conjecturey = (aq,...,a,) A
noden; is defined by(&;, A;, w;):

o & is a world state (i.e., a set of propositions fully or
partially instantiated);

A; is a list of remaining actions to execute at this step
of the reasoning;
w; is the valuation of the node (i.e., the number of
assumptions given from the root node of the conjecture
tree to this node).

in

The edges define the possible transitions between the
different world states. A transition is labeled by a method or
operator name and the possible assumptions needed to reach it.

The general procedure to produce a conjecture is given
i3y the algorithm 3. TherindConjectureprocedure takes as
parameters a planning probleréi: the initial state (i.e., the
agent's knowledge)Q a list of operators and@ the ordered



list of goals. The root node of the conjecture tree is defined\gorithm 4 : ExpandConjectureTre€({ree, n;)

by the node(&,G,0), £ is the initial set of the agent’s
knowledge,G the list of goals and null valuation.

The algorithm can be split in two different steps: the con=

1 // Extract the first action
/I the current node ;i
2 o « the first action contained in; ;

« contained in

jecture tree expansion (line 3) which represents the reachaﬁlg2 « the remaining actions contained 4 ;

states space and the conjecture extraction (line 4).

Algorithm 3: FindConjecturef, O, G)

1 root — (£,G,0) ;

2 CTree < create a conjecture tree with root nodmt ;
3 ExpandConjectureTree( CTree, root) ;

4 return ExtractConjecture( CTree) ;

12
13
C. Conjecture tree expansion 14

Unlike HTN recursive algorithm, the conjecture tress
expansion is not a simple depth first exploration: the
computation of the conjecture with the fewest assumptionsiis
equivalent to a minimization problem. In order to solve this
problem, the expansion algorithm is based on the “branch and
bound” algorithm. The nodes stored in the conjecture tree are
valuated by the number of assumptions made (see algori%fm
4) to reach it and the node with the weakest valuatig
is recursively chosen at the expansion step to expand gge
conjecture tree until a leaf is found.

The expansion procedure is described by the algorithmzz.
From the current exploration node; = (&, A;,w;), the 24
ExpandConjectureprocedure tries to apply the first actiorf®
o contained inA; (line 1). Then it computes the possiblg®
substitutionsY. for the preconditions ofx according to the 27
knowledgeé&; (line 6). For each substitution, the procedur®
generates the assumptiofd, needed to applyy (line 10).

If « is a primitive action (line 14), then it adds a child nod®
n;+1 to the current node such as: 30

niy1 = ( ({& UHa} — Dely) U Addy, R, w; + [Hal ) 9;12

4 [/ Compute the possible substitutions from
5 1/
6 // of the current node
7 Il substitution

8 Y. + FindSubstitutions(

9 /| Create a new node
10 /I each applicable action
11 foreach substitutions € ¥ do

Pre., « preconditions, and &i, the world

n; and o an empty

Preq, &, 0) ;

n;,+1 for each

/I Compute the assumptions needed to

Il apply e

H., «— GenerateAssumptions(  «, o, &;) ;

/I Check if the assumption generated

/I are legal

if 3 h e H, with h a legal assumptiothen
continue ;

Il « is a primitive action
if a is primitive then
5i+1 — ({(‘:L U H(X} — Del@) U Adda )
Aiv1 <R ;
wip1 < w; + |Ha| avec|H,| the number of
elements inH,, ;
end

/I« is a composed action
else
Eiy1 — EUHa
Aiy1 < Append( Actq, R) ;
wit1 — w; + |Hqa| with |H,| the number of
elements inH, ;
end

/Il Add a new node
/I conjecture tree
add a new node; 1 = (i1, Ait1, Wit1) ;

MNi4+1 to the

where |H,| defines the number of assumptions needed 3end

apply a. Otherwise (line 20)« is a composed action and, Compute the node with few assumptions
the procedure adds a child node to the current node such,asj; and run recursively the procedure

nitv1 = { {€ UHa}, append(Acty, R), w; + [Hal )

36 // ExpandConjectureTree
37 bestNode — the node with few assumptions @Tree ;
Finally, the procedure evaluates the new current nogieExpandConjectureTree(

bestNode) ;

by computing the node with the lowest valuation in the
conjecture tree (line 30) and runs recursively the expansion
procedure with the new node (line 31).

reduce the states space to explore, limiting the size of the

When assumptions are generated by the algorithm, tbenjecture tree.

expansion procedure checks if the assumptions are legal (line

11). An assumption is legal if its assumption predicates wks Conjecture Extraction

described in the planning domain as hypothetical. The legalityThe second step is the conjecture extraction from the
notion was added to our algorithm to specify states of tlwnjecture tree (see Algo. 5). A conjecture is represented by
world that can be hypothetical. This mechanism allows t branch (i.e. a path from the root node to a leaf). First,



the ExtractConjectureprocedure computes among the set of Adequacy with interactions: In teamwork context, a con-
solution nodes (i.e., the leaf of the conjecture tree) the nopeture can be refuted by another agent; if no repair is found,
that makes the fewest assumptions (line 2). For each edgetaf conjecture must be abandoned. In this case, the cost of
the branch from the chosen solution node to the root node (lipeviding another conjecture is low because agents can rely
3), the procedure checks the type of transition (i.e., primitiven the conjecture tree already computed and resume their
or composed action). If the edge is labeled with a primitivexploration.
one, then the action and their assumptions are added to the
conjecture (line 5). Otherwise, only the assumptions are added VI. RELATED WORK
to the conjecture (line 7).

The problem of constructing plans in a distributed
Algorithm 5: ExtractConjecture(7 ree) environment has been approached from two different
directions. One approach makes an emphasis on the problem
of controlling and coordinating the actions of multiple
agents in a shared environment. The others approaches focus
on planning and how it can be extended into distributed
environment, where the process of formulating a plan could

1 x < an empty conjecture ;

2 n «+ the leaf solution node with the fewest assumptions
3 while n is not the root node o€Tree do

4 if » was built with a primitive actiory; then

> | add action(Ha,, i) 10 x; involve actions and interactions of many participants. The
6 else , ) planning approach is the nearest to Assumption-Based
7 add the assumptiorf¥,,, to the actiona;_; Planning
contains iny ; '

® end . The first approach objective is not to form a good collective
9 n < the father node of: ; ) S

d plan, but rather to ensure that the agent’s local objective
10 €n will be met by this plans. This approach based obiB
11 return x ;

models formalizes the distributed planning process using the
mental states of the agents [8], [9], [10]. These approaches
emphasize the necessity for a group of agents to shimiata
V. DISCUSSION intentionin order to reach a goal [11], [12]. They have been
Soundness and completenessThe algorithm tries to Vvalidated in projects such asr&am [13]. Another cognitive
decompose the initial goal in an ordered list of primitiv@pproach [14] formalizes the coordination process by two
tasks. As in S0P, for a finite search space, the construction dfinds of intentions: the agentisitention todo an action or a
the conjecture tree is sound and complete. For infinite seaf@an and the agent'itention thatsome propositions hold.
spaces, it is also complete due to the iterative-deepenihgen, shared plans are generated by combining predefined
conjecture tree construction. However, our algorithm is mogdans or “recipes”.
greedy because, when assumptions must be done, more nodes
are created. The primary tests on our JAVA implementation The second approach [15], [16] places the problem of
highlight results in the same order of magnitude thdierming a plan as the ultimate objective and is typically
the J$ioP algorithm (the JAVA implementation of P carried out by agents that have been endowed with shared
algorithm). goals and representation. This approach can be divided
in three distinct steps: the decomposition step of tasks
Search limitation: The number of allowed assumptionsnto subtasks [17], [18], the allocation step [19] and the
can be bounded in order to end the search process atexmcution and conflict resolution step. This formal division
arbitrary limit. When the limit is set to 0, the algorithm isis sometimes difficult to implement because the three steps
equivalent to 80P. This can be used to adapt our algorithnare not independent in many cases: conflict resolution can
to the system capabilities and find conjecture with more aimiply to re-allocate several subtasks or to seek another
more assumptions. decomposition and, therefore, deadlocks must be carefully
dispelled. Several frameworks focus on the detection of
Choice of a planning system:There are many different relations between plans [20]. Two kinds of relations are
planning systems (e.g., planning based on Binary Decisiaentified: positive relations (e.g., redundant tasks) or negative
Diagrams [4], Mutex [5], heuristic search [6], constraintselations (e.g., resources conflicts). Conflicts are solved in
satisfaction [7] and so forth). However,H8P is well- many ways: by negotiation [21], by argumentation [22],
suited for assumptions generation thank to the substitutifiz8], by synchronization [24], [25] etc. More recently, the
procedure that allows to compare the agent’s knowledggstems [3IPE [26] that is a distributed version of SIPE-2
with the preconditions necessary to trigger an operator oroa the dMARS project [27] based on a PRS architecture,
method. We found out that assumptions generation turned an¢ interested in solving real-world planning problems and,
to be much more difficult in planners likeRAPHPLAN [5].  to that end, argue for the use of domain knowledge in planning.




Although these coordination mechanisms bring us a numbé¢z]
of answers to make a group of agents work together as a team,
they show limitations to solve cooperative task when the goal[g]
of the agents are not well proportioned. These limitations can
be explained by the fact that coordination mechanisms are not
interleaved in the planning process and often use predati
plans or recipes libraries. Another limitation is due to the
difficulty to take into account the necessary uncertainty in reaf®!
world because of the increasing planning complexity coming
from incomplete information.

VIl. CONCLUSION [7]

The Assumption-Based Planning model outlined in[g]
this paper relies on plan production and revision by
conjecture/refutation cycles. We presented one of the moBi
important elements of this project: the Assumption-BaseEgb]
Planner. This process is based on anHplanner, $i0p. For
a given initial task, the algorithm seeks the less hypothetical
plan (i.e, conjecture). It breaks down the initial task recursive[yl]
into simple operators. At each step, if no complete substitution
is found, the operators or methods constraints are relaxed4?
order to compute the assumptions necessary to push the plan
elaboration further. The construction of the conjecture tree [is]
guided by the valuation of each node in terms of assumptions
guaranteeing to find the most reasonable conjecture. As far5s
teamwork is concerned, each time a conjecture is definitivghp)
abandoned, a new one can be proposed from the ongo[i{l(%
conjecture tree.

Thus, Assumption-Based Planning model merges !
the collaborative plan generation, the decomposition and
the coordination steps. Moreover, the Assumption-Basgid]
Planning includes in the agents’ reasoning the notion of
uncertainty and allows to compose the agents competenges;.
The argumentation is used to structure the multi-agent
reasoning as a collaborative investigation process and not%%
a negotiation one. From our point of view, this approach is
suitable for applications in which agents share a commg]
goal and in which the splitting of the planning and the
coordination steps (when agents have independent go.'fg§],
they locally generate plans and then solve their conflicts)
becomes difficult due to the agents strong interdependence.
Our target applications are the composition of web servicqg;,]
the cooperation of video games characters and the dynamic
reconfiguration of &1 components. (24]

Our future research direction will be the formalization of thés]
conjecture/refutation protocol: the corresponding dialog gamﬁg
have to define interaction rules ensuring the convergence 01]
the multi-agent planning process towards a mutually accepted
conjecture; and the identification of different kinds of domairi¢”]
independent plan refutation to build robust plans.
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